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LElTER TO THE EDITOR 

Universality of eigenvector statistics of kicked tops of different 
symmetries 

M Kuit, J MostowskiS and F Haake 
Fachbereich Physik, Universitat-GHS Essen, 4300 Essen, Federal Republic of Germany 

Received 5 July 1988 

Abstract. We show that the eigenvectors of the Floquet operators of periodically kicked 
tops with orthogonal, unitary and symplectic canonical transformations conform to the 
predictions of the respective circular ensembles of random matrices. 

The Gaussian and circular ensembles of random matrices [ 11 have proven successful 
in their predictions for the eigenvalue statistics of quantum Hamiltonians H and 
Floquet operators F which classically describe fully developed chaos. The level spacing 
distribution and the spectral stiff ness, as well as other characteristics of the spectrum 
of H or F, are generically indistinguishable from the corresponding properties of 
matrices randomly drawn from the appropriate ensemble [2-61. 

Much less is known about the reliability of random matrix theory with respect to 
the statistics of eigenvectors of H or F of dynamical systems [7]. We have therefore 
subjected the eigenvectors of the Floquet operator of periodically kicked tops [3-6,8,9] 
to statistical analysis. As will be shown below the eigenvector statistics agree nicely 
with that derived from Dyson's circular ensembles of random matrices. Especially, 
tops pertaining to each of the three known universality classes have been investigated 
and found to clearly reveal the rather different behaviour of matrices from the 
orthogonal, unitary or symplectic circular ensemble. 

Considering first the circular unitary ensemble (CUE) of N x N unitary matrices F 
we are facing unit-norm eigenvectors with N in general complex components c, = 
c ;  -t ic:, For a fixed matrix F every eigenvector can be unitarily transformed into an 
arbitrarily prescribed unit vector. The only characteristic of eigenvectors invariant 
under the unitary canonical transformations$ is the norm itself. The joint probability 
density for the N complex components of the eigenvectors must therefore be [ 101 

N 

PCUE((cn}) =constant x s 1 - IC,[ ( n = l  2, 

the constant being fixed by normalisation. Evidently, PCUE({ c,}) is non-zero only on 
the surface of a d-dimensional unit sphere with d =2N. A convenient quantity to 
compare with data pertaining to the Floquet operator of a dynamical system is the 

t Permanent address: Institute of Theoretical Physics, Warsaw University, 00-681 Warsaw, Poland. 
$ Permanent address: Institute of Physics, Polish Academy of Sciences, 00-668 Warsaw, Poland. 
8 We refer to transformations as canonical when they preserve the eigenvalues of F, the unitarity F + F  = 1, 
and the transformation properties, if any, under time reversal. For the CUE, COE and CSE the groups of 
canonical transformations are, respectively, U( N), O( N), and Sp( N). 
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reduced density of, say, lc112, i.e. of the first-basis-state population in an eigenstate of 
F, 

r 

J 

For the circular orthogonal ensemble of unitary N x N matrices the eigenvectors 
can be taken as real. The probability density PCoE({c}) of the circular orthogonal 
ensemble (COE) is thus concentrated on the surface of a unit sphere of dimension d = N, 

and the reduced density for any particular basis state being populated is 

P C O E ( A )  = dcl * * dCN S(A-c?)PCOE({c}), I (4) 

Finally, the matrices from the circular symplectic ensemble (CSE) again have 
unit-norm eigenvectors with N in general complex components, N being an even 
number. The density PCsE({c}) therefore is identical in appearance with PCUE({c}). 
However, the natural reduced density to compare with the data for the Floquet operator 
of a dynamical system now looks different from its COE and CUE analogues. We must 
recall that in the symplectic case there is an antiunitary time-reversal operator T 
squaring to minus unity which yields a time-reversal ‘covariance’ of F 

TFT-’ = F+ T2=-1. ( 5 )  

10, TlO, l2), TP), * .  * Y I”, TIN/% (6) 

A natural basis to work with has the structure 

The two eigenvectors of F pertaining to one given eigenvalue can then be written as 

I e,) = c1 I 1) + Z, TI 1) + c212) + Z2 T 12) + . . . 
TJ e,) = -?,*I 1) + cT TI 1) - Z2*12) + cf T12) + . . . . (7) 

However, any linear combination of le,) and Tle,) together with an orthogonal one, 

.le,) + PTleJ -Pie,)+ a T l 4  (8) 
with /ai2+ [PI2 = 1 can equally well serve as a pair of eigenvectors pertaining to the 
eigenvalue in consideration. A diagonalisation routine starting with the matrix F in 
the representation (6) will in general not yield the two eigenvectors in the form (7) 
rather than (8). The probability of having the state 11) populated is thus as much a 
property of the diagonalisation routine as one of the eigenvectors of F. However, the 
occupation probability lc,I2+ IE,12 of the two-dimensional subspace spanned by 11) and 
TI1) is invariant under the transformation from (7) to (8). We are thus led to comparing 
the reduced density 

with the corresponding distribution obtained by diagonalising F where 

PcsE({c, E>)  =constant x 
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For all three circular matrix ensembles the joint distribution of the components of 
eigenvectors are uniformly concentrated on d-dimensional unit spheres with d = N in 
the orthogonal case and d = 2 N  for the unitary and symplectic ensembles. In a unified 
notation using real variables, x1 , . . . , x d  the properly normalised joint distribution is 

d 

p ' d ' ( { ~ } )  = ~ - ~ / ' T ( d / 2 ) 8  ( 1  - x:), 
\ n=1  / 

By integrating out d - I of the variables x we obtain the reduced distribution 
I (d-/-2)/2 

T[(d - 1)/2] ( n = l  
P(dJ) (X ,  , . . . , XI) = T-1'2 

The (d - I)-fold integral over P ' d ' ( { ~ } )  is most conveniently carried out by using a 
Fourier integral representation for the delta function in ( 1  1) .  Different choices for d 
and I now give the reduced densities Pc-E(A), PcuE(A) and PcsE(A) defined above. 

In the orthogonal case we must take d = N, I = 1 and find 

Pc,E(A) = d ' 2 T (  N/2)/T(( N - l)/2)A-'I2( 1 -A)(N-3)/2,  (13) 

P ~ ~ ~ ( A ) = ( N - ~ ) ( ~ - A ) ~ - *  (14) 

PcsE(A) = ( N  - 1 ) (  N - 2)A( 1 - A )  N - 3 .  (15) 
Interestingly, the three functions (13)-(15) are quite different in their A dependence. 

It is well to remark that nowhere in constructing the P ( { c } )  and the P(A)  have we 
made use of the unitarity of the matrices E In fact, the results (13)-( 15) hold for the 
Gaussian ensemble of Hermitian matrices as well. 

Periodically kicked tops have proved an important testing ground for universality 
of quantum fluctuations under conditions of classical chaos [3-6,8,9]. The relevant 
dynamical variables are the three components of an angular momentum operator J 
which obey the commutation relations [J,, JJ] = k,,kJk. Since all tops have the squared 
angular momentum conserved there is a good quantum number j defined by J 2 =  
j (  j +  1) .  All integer and half-integer numbers are allowed for j .  While classical 
behaviour arises for j + 00 we are interested in the semiclassical range 1 << j <CO. For 
fixed j the dimension of the Hilbert space is N = 2j + 1.  Periodic kicking is described 
by a Hamiltonian of the form 

The analogous result for the unitary case is obtained with d = 2N, 1 = 2 as 

while the symplectic case requires d = 2N, 1 = 4 and leads to 

+m 
H = H o + V  c 6 ( t - n )  

n = - m  

if the kicking period is set equal to unity. The operators Ho and V are polynomials 
in J. Restricting ourselves to a period-to-period stroboscopic description we have to 
deal with the unitary Floquet operator 

(17) F = e - i V  e-iH, 

Different choices for Ho and V now allow us to construct Floquet operators from 
different universality classes. The simplest case to realise is the one with O ( N )  as the 
group of canonical transformations. By choosing [4,9] 

V = AJi/2j Ho = PJ, (18) 
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we have a Floquet operator with the covariance 
T R - '  = F+ 

under the antiunitary time-reversal operation 

TO T = eiHo e i r J  

where To is the conventional time reversal, ToJTi' = -J. The statistics of the eigen- 
phases of F must therefore be expected and have indeed been shown to be that of the 
COE [4]. Curve 0 in figure 1 presents the analogous evidence for the eigenvectors, 
obtained by diagonalising F for j = 100, A = 6.0, p = 1.7. Due to the geometric invari- 
ance [R,, F ]  = 0, with R, a rotation by 7~ around the y axis, the matrix F breaks into 
two blocks, one with dimension j and the other with dimension j + 1. The eigenvector 
data in figure 1 pertain to the j-dimensional case. 

In order to construct a dynamics with symplectic canonical transformations we 
must again secure a time-reversal covariance of the form (19) but take a half-integer 
value of j in order to have T2 = -1. Moreover, since there must be no geometric 
symmetry the operators Ho and V cannot be quite as simple as (18). The presumably 
simplest case has [ 6 ]  

and T = eiHoTo. Quartic level repulsion as characteristic for the CSE has been demon- 
strated in [ 6 ] .  Curve S of figure 1 displays the quantitative reliability of the CSE 

prediction for the eigenvector statistics. The diagonalisation of F was carried out for 
j = 49.5, p = 2.5, k = 2.5, k' = 2,  k" = 3. 

1.0 

- 0.5 
=5 
4, 

I ,  1 1 I I I I I I I I I I I I  1 1  1 1  
0 0.01 0.02 0.03 0.04 0 

A 
15 

Figure 1. Integral I ( A )  = 5: d a  P ( a )  of the reduced probability P plotted against appropri- 
ate amplitude A for the four models of kicked tops: R, nearly integrable case with orthogonal 
symmetry, A = c:; 0, non-integrable case with orthogonal symmetry, A = c:; U, non- 
integrable case with unitary symmetry, A = lc,I2; S, non-integrable case with symplectic 
symmetry, A = I c , ~ * + / E , ~ ~ .  The smooth lines correspond to the theoretical predictions 
(13)-(15) of COE, CUE and CSE whereas the histograms give the numerical diagonalisations. 
In all cases the dimensionality of matrices was equal to 100. 
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The simplest dynamics without a time-reversal symmetry that we have found [4] 

(21) 

involves a Floquet operator consisting of three unitary factors 

F = exp(-ik’Ji/2j) exp(-iWf/2j) exp(-ipJ,). 

This differs from (17) and (18) by an additional non-linear kick around the x axis. 
For k’= k and p # 7r/2 there is no antiunitary symmetry as was evidenced by quadratic 
level repulsion according to the CUE in [4]. Curve U in figure 1 shows that the 
eigenvectors also conform to the CUE prediction. The calculation was done f o r j  = 100, 
k = 6.0, k’ = 0.5. 

Finally, curve R of figure 1 refers again to the dynamics (17) and (18) but with 
k = 1 to make the classical motion nearly integrable. The level spacings have Poissonian 
statistics in that case [6]. The eigenvector distribution shows that the eigenvectors 
have their supports on a very small number of basis states, just as one must expect 
for random matrices with a tendency to level clustering. 

We are indebted to Rainer Scharf for providing us with his diagonalisation codes. 
Suppart by the Sonderforschungsbereich 237 der Deutschen Forschungsgemeinschaft 
is gratefully acknowledged. 
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